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An analogy whereby the study of the phase trajectories of a nonlinear self-contained sys- 

tem is replaced by the investigation of the trajectories of some field of forces called the 

“adjoint” field is considered in jJl]. In the present paper we examine the properties of 

adjoint fields and their application to nonlinear self-contained systems. 

1 , Let us consider a two-dimensional self-contained system of the form 

2- = p (z, y), Y’ = 4 (z, Y) (i-1) 
where .X and y are the coordinates of a point in the phase plane, We assume that the 

functions p (x. g) and p (X, E/) are continuous and that they have continuous partial 

derivatives (with respect to both variables) of up to and including the second order in 
the given domain of variation of the variables X and g. 

In seeking the derivatives X .* and @” , by virtue of (1.1) we obtain equations which 

can be considered as the equations of motion of a point of unit mass (m = 1) in the force 
field F= P (2, 1~) i + Q (2, y) j 

(4.2) 

Following Liu and Fett @.I. we shall call the resulting force field F the adjoint field 

of system (1.1) and Eqs. (1.2) the adjoint equations of motion, 

Since x l = p (x, y ) and g l = Q (x, &I) can be considered as partial integrals of sys- 
tem (1. Z), the family of phase trajectories of self-contained system (1.1) is a subset of 

the set of all trajectories of system (1.2). Hence, the problem of finding the phase tra- 

jectories of system (1.1) can be reduced to the more general problem of finding the tra- 

jectories of adjoint system (1.2). 

2 , Any ad joint force field of the form (1.2) can always be normalized and represen- 
ted as a superposition of two fields of which one is potential and the other a gyrcacopic 

force field (this is the normalization theorem). 

In order to convince ourselves, let us introduce the two functions 

I7 (2, Y) = - l/z (PP + 4% Q (2,~) = apl aY - as / 8~ (2.1) 

Then, by (1.2). we obtain 

P (s, Y) = -W/Br+Qq, Q (2, Y) = - N f ay - Qp (2.2) 

Hence it follows that a material particle in the adjoint field F = pi + Qj is acted 
on by two forces : the conservative force formed by the? field with the potential 

v (r, Y) = ---‘I* (pS + 9”) _1- const. and by the gyrcscopic force 
P = P,i + P,j (r, = n/*, rv = -SC) (2.3) 
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In fact, by (1.1) and (2.3), the work performed by the force r over any real displace- 

ment dr(dx, d g) is equal to I'.& = ii? (y' dx - X' dy) = 0. 

By virtue of (1.2) and (2.2) , adjoint equations of motion (1.2) can be written in the 

form 2” - szy’ = - av / ax, y” + Qx’ = - av ! ay (2.4) 

Birkhoff j?] obtained the equations of motion in this form for a Lagrangian system with 
two degrees of freedom with a constant energy h equal to zero and a Lagrangian ?: given 

by the Expression L = l/z (2’” -i- y.2) - p (2, y) 1; - f/ (.z, w) v/’ - I’ (I, .y) 

where I/(X, y) is defined by (2.1). 

3 , Let us find the condition which the given functions p (X. &) and 4 (X, &J) must 
satisfy in order for the adjoint force field (1.2) to be conservative, Clearly, it is con- 

servative if and only if c3P J LJy = c?Q / ax. 

Hence, after some simplifications we find from (1. 2) and (2.1) that 

a $2~) / a~ + a @q) / 8~ = 0 (3. i) 

Thus, condition (3.1) guaranteeing the conservativeness of the adjoint force field is 

equivalent to the condition of continuous steady flow of an ideal fluid, provided the 
velocities of the phase point X l =p(X, p) and gl’=q(X, I/) are considered as the 

velocities of a fluid particle ; the role of the fluid density P is played by the function 
fl , which, as we see, is the negative vortex strength c = 4;r -& . 

Let us consider some particular cases when condition (3.1) is fulfilled. 

A) The case (*) fi = 0 (where the condition of the total differential of the Pfaffian 

formp&V+~~b, is fulfilled) has a simple hydrodynamic interpretation, i. e. that the 
motion of the fluid associated with the motion of system (1.1) is nonvertical ((; r-R= 0). 

B) The case 62 (2, y) :.= C (C # 0) also has a simple hydrodynamic interpretation, 

i.e. the corresponding fluid flow is vertical with a constant vortex velocity 6(X, u) = 

=q’x -pr = const , 
By virtue of condition (3.1) we obtain 

ap / 82: -+ ai_7 / ay = 0, ap / ay - aq / ax = c (3.2) 

Relations (3.2) can be written in the form of Cauchy-Riemann conditions. This enables 

us to formulate the following statement _ 
In order for the adjoint field of self-contained system (1.1) under the condition 0 = c 

to be conservative it is necessary and sufficient that one of the functions 

F, (4 = p (2, Y) - i (4 (x7 Y) + Cd or FZ (z) = (P tr, Y) - CY) - iq (xc, Y) 
be analytic. Here the functions p(X I E/) and Q (X, I/) are harmonic but not conjug+% 

We introduce the function fl(X, g), setting 

Sl/ dY = p lx, Yl, m/ax= -q(x, y) (3.3) 

By (3,2), the function 8(X, g) must satisfy the Poisson Eq, dfi(X, JI) = 0. It plays 
the role of the Hamiltonian for initial system (1.1). 

dx / dt = dH / ay, dy/dt = -i3H/dx 

Along the phase trajectories we have qdx -pdy = 0 . Hence, by virtue of (3.3), we 
&ah dH= b , so that fl(X, y) = const is the integral of system (1.1). Finally, far the 

*) Case A is considered in F7. 
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adjoint field we obtain 

P = - N* / ax, Q = - S’* / $/ (I’* =- ‘I8 (p’ + q’) + CH) (3.4) 

C ) The case where 0 (x. y) is variable. Condition (3.1) of conservativeness of the 

adjoint fieId expresses the fact that fl (x, g) is the integrating factor of the differential 

equation of the phase trajectories of system (1.1). Condition (3.1) can be satisfied by 
setting aY 

-G, 
dY 

-=Z ax ay = QP (3.5) 

By (3.5). along the phase trajectories we have dY=&?(-pq+qp)dt=O,sothat 

y(X, y) = const is the integral system (1, I), Here the potential of the adjoint field is 

Y* (I, Y) = - l/z (P2 + 47 + Y (5, Y). 

4, A self-contained system of the form 

x’ = q (2, Y)I y’ zz 
- P (2, Y) (4.1) 

will be called conjugate to the basic system (1.1). 
The phase trajectories of basic system (1.1) and conjugate system (4.1) are clearly 

orthogonal, Conjugate system (4.1) is likewise subject to a theorem on the normaliza- 
tion of the adjoint force field analogous to the theorem proved for basic system (1.1). 

The condition of conservativeness of the adjoint force field for conjugate system (4.1) 
is of the form 

d (qQ*) / ax - a(pQ*)iay=o 02*=apm+aq/*) (4.2) 
This expression is at the same time the condition under which the function n ‘(x. y) 

is the integrating factor of the differential equation of the trajectories of system (4.1)) 

P (2, Y) da: + 4 (2, Y> dy = 0 

Here we can also consider the cases fl *= 0, fi *= const , giving them a simple hydro- 
dynamic interpretation as we did in the case of system (1.1). 

If we require simultaneous fulfilment of conditions (3.1) and (412) of the conservative- 

ness of the basic and conjugate systems, it becomes necessary to consider simultaneously 

Eqs. gP+ $qz-Q(p,&), $$J-$$=--*(q,-Py) 
which by virtue of (1.1). (4.1). as well as (2.1) and (4.2). can be written in the form 

dii’ / dt = - !iiQ*, d@ I dt = i-&i?* (4.3) 
This implies that n + a*= const . 

6 , Let us turn again to self-contained system (1.1). Let the functions p (x. I/) and 
Q(x, &‘) be such that condition (3.1) of the conservativeness of the adjoint force field 

is not fulfilled. and let D (2, y) = py - qz # 0. 

We pose the problem of finding a transform of self-contained system (1, l), and hence 
of the adjoint force field, which would render the adjoint field conservative without 
altering the phase trajectory picture. We shall tackle the problem by means of the 
reducing factor method proposed by Chplygin p] in his consideration of nonholonomic 
systems. 

We introduce the new independent variable 7 by way of the relation 

dt = o (cc, y) dT (5.1) 
Here W (X, y) is some appropriately chosen function of the variables X and y which 

is called the reducing factor. A transform of the (5.1) type was also used by Birkhoff in 
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his study of Lagrangian systems, 

With the aid of the indicated transform (5. l), system (1.1) can be written as 

db! dr - p (2, ?/) w (Xc, y), dy 1 dr = Q (x, M) 0 (z, ?//) (;i. I!) 

while the differential equation of the phase trajectories retains its original form 
p (T, w) d?/ - ‘I (2, y) rlx z- U. Expressing for brevity the right sides of (5.2) in terms of 

p ‘(x, E/) and q *(x, g) , respectively, we write out the adjoint equations of motion as 

we did in the case of basic system (1,l). As a result we obtain 

2.” -z - dV” / ire + (I*s1*, Y *I zzz - av* / ay - p*Q* (5.3) 

I’* = - ‘/,02 (p2 -+ C/Z), Sd* = oSb + (- Q a0 / ax + pa0 / i?y) (5.4) 

We choose the reducing factor W(X. y) in such a way that SJ* = Do* - Q,* -;= 0 

The adjoint force field then becomes conservative, and for finding W (X, Q) we have 
from (5.4) the following partial differential Eq, : 

--qawfaZ+paof&i+OQ=o (5.5) 

which, as we know, can lead to integration of the system 
dx dy d In 0 -.----=~E- 

--4 P -C? 

It is easy to see that the reducing factor Iu (x, E/) is in this case the integrating tac- 

tor of the differential equation of the phase trajectories of conjugate system (4.1). 

6 , Let us consider a generalized Van der Pol equation of the form 

z” _i- /.I. F (x)x‘ -/- kZx = 0 (p = const) (6.1) 

Here F(X) is a given function of the variable X. We introduce the new variable 
E/ = x’ + G(X) , where G(X) is an appropriately chosen function of the variable X. 

Differentiating y and choosing G(X) in such a way as to guarantee fulfilment of the 
condition Gtx) = pP(x) , by virtue of Eq. (6.1) we arrive at a self-contained system 

of the form z’ = y - G (z), y' zx - k"z (6.2) 

Hence, the problem can be reduced to the study on the Lidhard plane Eq, 

Let us apply the method of adjoint field to the study of system (6.2). We have 

P=Y - G (x), 9= - k2x,, a = pv - qx = 1 + k2 

Let us consider the possible cases. 
1) The adjoint force field is conservative, so that condition (3.1) is fulfilled. Since 

in this case hz = const , the functions P(x, y) and 4 (x, g) must satisfy the Laplace Eq. 
A p (5; Y) = AZ (2, Y) =O. 

This yields G #(X) = 0 , so that F(x) = const , i. e. Eq. (6.1) describes a linearly 

damped oscillator. 
2) The adjoint force field is not conservative, so that 

a (Qp) / a~ + a (Qd / a~ f u 

Let us make use of the reducing factor method and write out system (5,6), w’hich in 

this case is of the form 
dx d.v dlno 

7&Y- y-G(y) = -(1 $-kg) (6.3) 
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Taking the extreme terms, integrating, and clearing logarithms, we obtain the follow- 
ing expression for the reducing factor UI (X) : 

0 (4 272 cx-a (a = (1 + P) / k2, c = const) 

The reducing factor W(X) is the integrating factor of Eq, (y - G (r)) die - I&C&! = 0, 
which is the differential equation of the phase trajectories for the system conjugate to 

system (6.2) s Determining &’ from (6.3) becomes simply a matter of integrating a first- 

order linear equation, and as a result we find 

Here (?I is an integrating constant. Thus, the system of lines orthogonal to the result- 

ing trajectories (6.4) serves as the system of phase trajectories for the initial self-cone 
tained system (6.2). 

As a further illustration let us consider the linear Eq. 

2” + (A + Bz)G (z’) + az = 0 (64 

to which many problems in self-oscillation theory are reducible, 
Here A! , B and Cc are constants, and I? (X’ ) is some continuous function of the vari- 

able X*. The phase trajectory picture (6.5) can be described by means of the system 

x’ c: y, y’ = -ax - (A + Bx)G (y) VW 

Let the adjoint force field be nonconservative, so that condition (3.1) is not fulfilled. 
We apply the reducing factor method. Since 

P = Y, q= - cm - t-4 + W G (y), Q h 21) = 1 + a + BC (Yl 

by virtue of (5.6) we obtain 
dX &! dlIkilI 

az+(A+BxfGfy) =y = -(%+a)-N(y) 

Taking the mean and extreme terms, integrating, and clearing l~a~thms, we obtain 

the following expression for the reducing factor W( 9) : 

0 (y) = y-C”+C”b (y> ( F(y) = exp (-BSqby)) (6.7) 

Since the reducing factor W ( y) is also the integrating factor of the differential equa- 

tion of the trajectories of the system conjugate to system (6.6), the Pfaffian form 

$0 (y)ds - w (Y) I= + (-4 i- B4 G (Y))& = 0 

is the total differential of some function $ (X, 20, Integrating, we find (by (6.7)) that 

‘p (z, y) = y-a2F fu) - h (3) = const, f6*S) 

h (Y) = AJy’-(l+“‘G (~1 F (Y) &I (6.9) 

Having constructed the system of lines orthogonal to the system $(X, I/) = const (6. S), 
we obtain the phase representation for the initial self-corm&red system (6.6). 

Xn conclusion we consider a special case of Eq. (6.5). 

i’ + G (2’) + ccz = 0 (6.10) 

The phase trajectories can be obtained by considering a selfqontained system of the 
form 

$$ zzz Y? y' = - az - c (y} (6.11) 



Making use of (6.7) and thus setting A -= 1 and B = 0, we obtain 

F (y) = 1, w (y) = y-(L+a) 

Thus, by virtue of(6.89 and (6.9). we obtain the expression far the phase trajectories 

of the system conjugate to (6.11) 

9 f+t 9) = q*” - h (y) = const (Jr (Y) = &-il+a, c (Y) +f) 

Having constructed the system of lines orthogonal to system +(x, y) = canst , we 
obtain the phase trajectory picture for initial system (6.11). 
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